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ABSTRACT: The thermodynamic driving forces behind
small molecule−protein binding are still not well-understood,
including the variability of those forces associated with
different types of ligands in different binding pockets. To
better understand these phenomena we calculate spatially
resolved thermodynamic contributions of the different
molecular degrees of freedom for the binding of propane
and methanol to multiple pockets on the proteins Factor Xa
and p38 MAP kinase. Binding thermodynamics are computed
using a statistical thermodynamics based end-point method
applied on a canonical ensemble comprising the protein−ligand complexes and the corresponding free states in an explicit
solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the
configurational ensemble provide an unprecedented level of detail into the mechanisms of binding. Direct protein−ligand
interaction energies play a significant role in both nonpolar and polar binding, which is comparable to water reorganization
energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding
enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of
the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy−entropy compensation and
reinforcement mechanisms are observed. It is notable to have the ability to visualize the spatial distribution of the thermodynamic
contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the
binding of propane versus methanol.

1. INTRODUCTION

The noncovalent association of macromolecules with ligands
plays an important role in biological functions. Although
binding thermodynamics has been rigorously formulated,1 the
quantification of the different component driving forces is
largely lacking. Of the forces driving noncovalent ligand
binding, hydrophobic association forms an important class of
interactions, which involves the binding of a nonpolar ligand to
a nonpolar binding pocket. The classical view of the so-called
“hydrophobic effect” is that water molecules are more
structured at binding interfaces than in bulk, resulting in an
entropic driving force to cause the association of the solutes to
minimize the solvent exposed surface area. However, more
recent explanations2 have noted the complicating roles of size,
polarity, and surface topography of the associating species that
make the binding process context specific. Some computational
studies have indicated that the enthalpic and entropic
contributions of the associating species and water may be
quite different for protein−ligand association than what the
entropy dominated classical view in the context of small
hydrophobic solutes suggests.3

Inhomogeneous solvation theory (IST)4,5 and related
methods6 have been used to calculate the thermodynamic
properties of water at ligand binding interfaces in proteins7 and

to relate those properties to experimentally measured ligand
binding affinities. A study that combined isothermal titration
calorimetry (ITC), X-ray crystallography, and IST based
computational analysis8 measured an enthalpy dominated
hydrophobic binding that could be explained by the calculated
energy changes of local water molecules. However, analysis of
individual local water molecules performed in these studies,
while being both qualitatively and quantitatively informative,
does not rigorously compute binding thermodynamics. Taken
together, these studies show that the mechanism of binding in
the context of protein−ligand association is still not completely
understood.
In an attempt to decipher the molecular mechanism behind

the binding of ligands to proteins and derive general principles,
McCammon and co-workers investigated the binding thermo-
dynamics of idealized spherical ligands to hemispherical model
cavities with zero or unit charge.9,10 They obtained the
thermodynamic signature of a neutral probe binding to a
neutral cavity which involved compensating favorable enthalpic
and unfavorable entropic components. Favorable binding was
due to the water reorganization energy contribution being
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larger in magnitude than the entropic component. Introducing
a unit charge on the probe and/or the cavity resulted in large
changes in the thermodynamic signature, compared to
relatively smaller changes in binding affinity. While this
manuscript was in preparation, Michel et al. reported on the
use of the Grid Cell Theory method11 to study the
thermodynamic signature of idealized ligands binding to
model cavities.12 Their tests with a range of cavities with
differing polarity and geometry resulted in significantly varying
thermodynamic signatures highlighting the lack of a singular
explanation for hydrophobic association. However, it is not
clear if studies involving such idealized host−guest systems are
representative of association between real ligands and real
hydrophobic or polar cavities present in proteins.
In this work, we undertake analyses of ligands binding to a

relatively large number of protein pockets of different geometry
and topography with the goal of understanding the
contributions of the different thermodynamic driving forces.
Two well-studied and pharmaceutically important proteins,
Factor Xa (FXa) and P38 MAP kinase alpha (P38MK), are
selected as examples. Molecular dynamics (MD) simulations of
these proteins in a solution of propane and methanol,
respectively, representing hydrophobic and neutral polar
ligands, are performed to identify the binding sites of these
molecules on the proteins. The use of this approach to select
binding sites to which ligands bind spontaneously makes the set
of investigated association reactions relevant and representative
of protein−ligand binding in biochemical systems. Following
the identification of the binding sites, additional MD
simulations are undertaken to generate a solvated configura-
tional ensemble of the protein−ligand complexed states. MD
simulations are also performed to obtain the configurational
ensemble of the ligand-free protein and the ligand in solution.
The canonical ensembles generated in these end states are
subjected to an end-point thermodynamic analysis detailed
below, which calculates the energy, entropy, and free energy of
binding. The analysis yields a detailed view of the energetic and
entropic contributions of direct protein−ligand interactions and
water reorganization upon binding, including the variability of
the thermodynamic contributions in different binding sites.
Further, the formulation decomposes the contributions spatially
and allows for local analysis of the thermodynamics at an
atomic level of detail.
The paper is organized as follows. In the Theory and

Methods section, we describe the method for the calculation of
binding thermodynamics and its different components. In the
Results section, the method is first validated by reproducing
experimental solvation free energies of 6 small molecules. Next,
we describe the simulations and calculations involving the
binding of ligands to the two proteins and quantify the different
energetic and entropic contributions to binding. The
Discussion section presents further analysis of our results and
elaborates on the implications of our findings.

2. THEORY AND METHODS
The binding free energy of noncovalent association is expressed as the
sum of enthalpic and entropic contributions. In the context of
macromolecule−small molecule binding, where the pressure−volume
work is negligible,1 enthalpy can be replaced by energy to a good
approximation. The standard free energy of binding is given as

Δ = Δ − ΔG E T So
b b b (1)

where ΔEb is the energy change and ΔSb is the entropy change during
the binding process. This work follows an “end-point” approach to the
calculation of binding thermodynamics where we analyze the
configurational distribution of the solutes and solvent obtained in
the canonical ensemble in the complexed and free states. The energetic
and entropic differences between these end states are calculated to
yield the free energy of binding. Figure 1 depicts the binding of a

ligand to a solvent exposed protein. During this process, the protein
(P, center) and the ligand (L, left) undergo conformational changes. L
leaves the solvated environment and binds to P resulting in the
complexed PL state (right) where water molecules are displaced and
reorganized. Our goal is to understand the contributions of different
degrees of freedom to binding. Particularly, it is of interest to learn
about the magnitudes of the driving forces implicated in the binding of
hydrophobic and polar molecules to diverse protein pockets in which
water is an important player. Here, we apply a variation of Grid
Inhomogeneous Solvation Theory (GIST13) to calculate thermody-
namics associated with water, which is formally defined for a fixed
solute conformation. In principle, it is possible to perform such an
analysis for multiple conformations, but in this initial study, we restrict
ourselves to using restrained protein geometries during the MD
simulations. The ligands chosen are small such that they do not have
rotatable bonds involving heavy atoms.

IST-based approaches calculate the energetic and entropic
perturbation introduced in bulk water due to the presence of a solute.
GIST is employed presently to calculate the excess energy and entropy
in a spherical region surrounding the ligand (L), the solvated protein
pocket (P), and the protein−ligand complex (PL), as schematically
shown in Figure 1. The fact that solvent far away from the solute
attains bulk-like character allows for restricting the calculation to a
local surrounding region. The difference in the excess water energy
and entropy between the PL, P, and L states results in the solvation
free energy change ΔΔGb

solv contributing to binding. To calculate the
binding free energy ΔGb

o, we analyze the PL ensemble to calculate the
energy and entropy of the ligand in the bound state with respect to an
ideal gas state at the standard concentration of 1 M. The
thermodynamic cost of transfer of the ligand from solution to an
ideal gas state is accounted for through the calculation of L (left in
Figure 1). The following text describes in detail the approach used to
calculate the different contributions to the binding energy and entropy.

2.1. Binding Energy. The binding energy ΔEb is defined as

Δ = ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩

= Δ + Δ + + ΔΔ

E E E E

E E E E

b PL P L

P L PL b
solv

(2)

where ⟨E⟩PL, ⟨E⟩P, and ⟨E⟩L are the ensemble averages of energies in
the end states. The second equality is introduced so as to decouple the
energy calculation of the solute from solvent. ΔEP and ΔEL
correspond to the difference in internal or intramolecular energy
between the complexed and free states for the protein and ligand,
respectively. EPL is the protein−ligand interaction energy. ΔEP and
ΔEL can be computed as the difference of internal energies recorded in
the solvated end states

Figure 1. Schematic showing protein−ligand binding. The free ligand
(L), free protein (P), and the protein−ligand complex (PL), all of
which are solvated are shown. The protein is shown in yellow, the
ligand in green, and water molecules as blue circles. The binding
thermodynamics and free energy ΔGb

o are obtained using an end-point
method which calculates excess energy and entropy in a local spherical
region which is also shown.
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Δ = ⟨ ⟩ − ⟨ ⟩E E Ex x x xPL (3)

where x represents either the protein P, or the ligand L. The angular
braces indicate ensemble averages over the bound (PL) and the
unbound (P or L) states. However, in this study, we simplify this
calculation by having strong restraints on protein heavy atoms and by
selecting ligand molecules that involve no rotatable bonds linking
heavy atoms. This causes the intramolecular conformational
distributions of P and L to be very similar in the complexed and
free states, making ΔEP = ΔEL ≈ 0. The approximation assumes that
energetic contributions due to hydrogen atom positions largely cancel
between the end states. Thus, the binding energy to a good
approximation becomes

Δ ≈ + ΔΔE E Eb PL b
solv

(4)

ΔΔEbsolv is the change in the solvation energy upon binding, which is
the difference between the solvation energy of PL and that of P and L.

ΔΔ = Δ − Δ − ΔE E E Eb
solv

PL
solv

P
solv

L
solv (5)

The calculation of these molecular solvation energies is described in
the Solvation Energy subsection below.
2.2. Binding Entropy. The binding entropy, ΔSb, is defined as the

difference between the entropies of the complexed and free states.

Δ = − −S S S Sb PL P L (6)

Here the terms on the right-hand side include the entropic
contributions from water. The binding entropy can be exactly re-
expressed as a sum of excess solute and solvent entropies

Δ = − − + ΔΔ∗ ∗ ∗S S S S S( )b PL P L b
solv (7)

where the asterisk indicates entropy purely due to the solute degrees of
freedom. Due to the strong restraints on the protein simulated in the
bound and free states (see below), and the relatively rigid nature of the
fragment-like ligands, the solute entropy can be approximated as the
rigid body entropy loss of the ligand upon binding ΔSL*, with the
reference state being the ligand in 1 M aqueous solution.

− − ≈ Δ

= Δ + Δ

∗ ∗ ∗ ∗S S S S

S S

( )PL P L L

L
trans

L
rot

(8)

In practice, ΔSL* is computed by analyzing the positions and
orientations of the ligand obtained from the simulation of the
complexed state and computing the 1-body Shannon’s entropy as is
done for water molecules described below. The approximation
assumes that entropic contributions due to hydrogen atom positions
are nearly equal between the end states.
The solvation entropy ΔΔSbsolv is given by

∫
∫ ∫

ΔΔ = Δ − Δ − Δ

= Δ

− Δ − Δ

S S S S

S p

S p S p

r r r r r r

r r r r r r

( , ) ( , ) d d

( ) ( ) d ( ) ( ) d

P L P L P L

P P P L L L

b
solv

PL
solv

P
solv

L
solv

PL
solv

P
solv

L
solv

(9)

where ΔSxsolv(rx) indicates the solvation entropy of species x in
conformation rx, and p(rx) is the equilibrium probability density of that
conformation. In other words, the molecular solvation entropy is
expressed as a weighted average of the solvation entropies of the
different conformations. The restrained protein and nearly rigid
ligands cause ΔSPLsolv and ΔSLsolv to be independent of the protein and
ligand coordinates rP and rL, respectively

∫ Δ ≈ Δ | ∗S p Sr r r( ) ( ) dP P P rP
solv

P
solv

P (10)

∫ Δ ≈ Δ | ∗S p Sr r dr( ) ( )L L L rL
solv

L
solv

L (11)

where rP* and rL* represent the relatively rigid equilibrium geometries
of the protein and ligand, respectively. In the remainder of this work,

for simplicity we refer to these quantities as ΔSPsolv and ΔSLsolv, omitting
the subscripts indicating the restrained geometries. In the complexed
state, the ligand is expected to assume a narrow range of
conformations, which is also due to the use of a restrained protein
in this study. This logic prompted us to adopt an approximation which
allows to decouple the calculation of ΔSPLsolv from rL.

∫ Δ ≈ Δ | ∗S p Sr r r r dr dr( , ) ( , )P L P L P L r rPL
solv

PL
solv

,{ }P L (12)

Here {rL} represents the family of ligand conformations in the
complexed state. The approximation in the equation mainly arises due
to the assumption that solvation free energy will not be significantly
affected by the mobility of the ligand in the binding pocket. In
principle, the accuracy of this calculation can be improved by
performing a clustering analysis of the ligand bound states and
computing a weighted average of ΔSPLsolv(rP, rL) over the finite
ensemble of predominant complex states {rP, rL}. Such a treatment
would also allow inclusion of protein flexibility. However, we do not
undertake such an analysis here and reserve it for a future study. In the
remainder of this work, for simplicity, the solvation entropy of the
complexed state is referred to as ΔSPLsolv, omitting the subscript
indicating the conformation(s).

Therefore, ΔSb can be rewritten as

Δ = Δ + ΔΔ∗S S Sb L b
solv (13)

The calculations of the molecular solvation entropies ΔSPLsolv, ΔSPsolv,
and ΔSLsolv are described in the Solvation Entropy subsection below.

2.3. Solvation Energy. The solvation energy ΔExsolv, of a solute x
per the presented approach is calculated as the sum of the interaction
energy of the solute with water and the energy change in bulk water
caused due to the introduction of the solute. As detailed above, these
calculations need to be performed for the free and the complexed
states (x can be L, P, or PL). The perturbation to bulk water due to
the solute is expected to vanish at long distances, allowing the
calculation of excess energy to be limited to a region local to the
solute. Here, the calculation region R is a sphere of radius 8 Å centered
on the solute or the binding pocket. To facilitate regional analyses, our
calculation follows the Grid Inhomogeneous Solvation Theory (GIST)
approach.13 The excess energy is integrated over a 3D grid spanning
the system composed of cubic volume elements v of edge length 0.5 Å

∫

∑

ρ

ρ

Δ = + −

= + −
∈

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

E g E E E

V g v E v E v E

r r r r( ) ( )
1
2

( ) d

( ) ( )
1
2

( )

x
R

v R

solv
o sw ww bulk

o vox sw ww bulk
(14)

where ρo is the bulk density of water, g(r) is the relative density of
water (g(r) = ((ρ(r))/(ρ0))), where ρ(r) is the density of water at
position r within the region R. Esw(r) and Eww(r) are the ensemble
averaged solute−water and water−water interaction energies as a
function of position. The second equality discretizes the energy
calculation by introducing per-voxel energies Esw(v), and Eww(v). The
subtraction of the energy of water in bulk, Ebulk, results in the excess
energy. Vvox is the volume of a voxel element.

It is straightforward to decompose the solvation energy into solute−
water and water−water terms.

∑ρ=
∈

E V g v E v( ) ( )x
v R

sw, o vox sw
(15)

This expression can be used to calculate various energetic terms:
ligand-water energy in the L or PL systems as Elw,L, Elw,PL; protein−
water energy in the P or PL systems as Epw,P, Epw,PL.

The excess water−water energy is given by

∑ρΔ = −
∈

⎡
⎣⎢

⎤
⎦⎥E V g v E v E( )

1
2

( )x o
v R

ww, vox ww bulk
(16)

In all summations, only the voxels which have their center within 8
Å of the center of R are included. This approach is followed to
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calculate the excess energies from the explicit solvent L, P and PL
simulations. Solute-water and water−water nonbonded interaction
energies are calculated using periodic boundary conditions without a
cutoff. Energy evaluations extend to one unit cell in each direction to
account for long-range interactions.
The calculation of per-voxel contribution to the solvation energy is

useful for spatial analysis and is computed using the following.

ρΔ = + −
⎡
⎣⎢

⎤
⎦⎥E v V g v E v E v E( ) ( ) ( )

1
2

( )x
solv

o vox sw ww bulk (17)

The per-voxel contributions are visualized using the Visual Molecular
Dynamics (VMD) package.14

2.4. Solvation Entropy. The solvation entropies of the P, L, or the
PL systems, ΔSxsolv, are also calculated using the GIST approach with
some modifications as described below. The solvation entropy can be
expressed as a sum of the entropy due to solute−water correlations,
ΔSswsolv, which is a 1-water term and water−water correlations ΔSwwsolv,
involving pairs of water molecules.

Δ = Δ + ΔS S Sx
solv

sw
solv

ww
solv (18)

ΔSwwsolv is the most difficult contribution to converge with limited
simulation data, which prompted us to employ approximations to
estimate it. Huggins observed recently15 that using a scaled value of
ΔSswsolv for an estimate of ΔSwwsolv resulted in good reproduction of
experimental hydration free energies of 20 solutes of diverse chemical
nature.

Δ = ΔS c Sww
solv

sw
solv (19)

A scaling factor of c = −0.5 was used in the above cited work, which is
motivated by a similar scaling observed in the analogous energetic
terms. The use of a negative factor assumes that increased solute−
water correlations are offset by decreased water−water correlations.
We adopted this approximation in our work. However, our initial tests
with reproducing the hydration free energies of a set of small
molecules showed a factor of −0.3 to result in better correlation with
experimental hydration free energy data (see Results section).
The solute−water entropy ΔSswsolv can be exactly expressed as a sum

of translational and rotational entropy.

Δ = Δ + ΔS S Ssw
solv

sw,tr
solv

sw,rot
solv

(20)

The excess translational entropy is calculated as

∫
∑

ρ

ρ

Δ = −

= −
∈

S k g g

k V g v g v

r r r( ) ln[ ( )] d

( )ln[ ( )]

R

v R

sw,tr
solv

B o

B o vox
(21)

where g(v) and g(r) are as defined above. Thus, in practice the
translational component of the entropy can be computed by
calculating the water density obtained from the simulation frames.
Rotational entropy is calculated as

∫
∑

ρ

ρ

Δ =

=
∈

S g S

V g v S v

r r r( ) ( ) d

( ) ( )

R

v R

sw,rot
solv

o
rot

o vox
rot

(22)

where Srot(r) and Srot(v) are the rotational entropies associated with
position r and voxel v within the region R, respectively. Srot(v) is
computed using a nearest neighbor estimator13

∫

∑γ π
ω

≈

= − − +
Δ=

S S v

k
N N

r dr( ) ( )

[
1

ln
6

( )
]

v

v i

N

v i

rot rot

B
1

3

v

(23)

where γ is Euler’s constant. Nv is the total number of different water
molecules in the voxel v, which was limited to a maximum of 1000 to

limit memory use. Δωi is the angular distance of a water molecule i to
its nearest neighbor geometry in the same voxel. Unlike our previous
study,16 we used the norm of the distance between quaternions to
evaluate Δω. This metric was recently shown to possess superior
convergence properties than the Eucledian distance between the Euler
angles.17 The first two sections in the Supporting Information describe
the formulas used in the conversion of Euler angles to quaternions,
and the convergence properties evaluated using randomly generated
data. Thus, the total rotational entropy is obtained as an average over
voxels in R weighted by the voxel relative water density g(v).

For spatial analysis the per-voxel contribution to ΔSxsolv is computed
as

ρΔ = − + −
⎡
⎣⎢

⎤
⎦⎥S v c k V g v g v

k
S v( ) (1 ) ( ) ln[ ( )]

1
( )x o

solv
B vox

B

rot

(24)

where the prefactor (1 + c) is introduced to add the empirical estimate
of the water−water entropy and the other terms are as defined above.

2.5. Protein−Ligand Interaction Energy. The protein−ligand
interaction energy Epl is calculated from the simulation snapshots.
Similar to the grid based approach adopted for the calculation of
solute−water and water−water energies, the protein−ligand energies
are also integrated over the grid spanning the binding site. However,
the spatial decomposition of this contribution is not presented in this
study as the binding site is a relatively small region.

2.6. Ligand Entropy. The ligand entropy calculation involves
translational and rotational components spanning six degrees of
freedom as for a single water molecule. Equations 21−23 are thus
employed with appropriate modifications for the calculation of ligand
entropy, ΔSL*. The bulk concentration of the ligand used is the
standard 1 M concentration, equivalent to ρ0 = (1/1660) Å−3. For
propane, the positions of the three carbon atoms were used to
calculate the Euler angles. For methanol, the atoms used were the
carbon, oxygen, and the alcohol hydrogen. Symmetry corrections were
not applied during the entropy calculation.

2.7. Binding Free Energy and Its Components. The
subsections above gave expressions for total binding energy and
entropy and solvation energy and entropy. However, to get
mechanistic insights into binding it is of interest to decompose
these terms into contributions arising from the different degrees of
freedom, which is given as follows.

Δ = Δ − Δ

= ΔΔ + Δ + Δ + − ΔΔ − Δ *

G E T S

E E E E T S T S

o
b b b

ww pw lw pl b
solv

L

(25)

Here, ΔΔEww is the water reorganization energy, and is obtained from
the analysis of P, L, and PL states

ΔΔ = Δ − Δ − ΔE E E Eww ww,PL ww,P ww,L (26)

The change in protein−water interaction energy is given as

Δ = −E E Epw pw,PL pw,P (27)

The change in ligand−water interaction energy is given as

Δ = −E E Elw lw,PL lw,L (28)

2.8. System Setup and Molecular Dynamics Simulations.
The crystal structures of Factor Xa (PDB ID: 1FJS18) and P38 MAP
kinase (PDB ID: 1OUY19) in complex with ligands were downloaded
from the Protein Data Bank (PDB).20,21 To maintain a charge neutral
system, for both proteins, solvent exposed charged residues were
neutralized. This was done instead of the standard practice of adding
neutralizing counterions in order to facilitate convergence of the
calculations. For Factor Xa (FXa), Lys62, Lys204, and Lys236 were
deprotonated. To neutralize the P38 MAP kinase (P38MK) system,
Glu12, Glu22, Glu97, Glu160, Asp145, Asp161, Asp177, and Asp315
were protonated, an approach previously used for free energy
perturbation and linear interaction energy studies of ligand−protein
interactions.22,23 The ligands were removed from the crystal structure,
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while maintaining crystallographic water molecules. The Reduce
software24 was used to assign His protonation states and adjust the
side-chain conformations of Asn and Gln residues. Following a short
restrained minimization in vacuo with the steepest descent method to
remove bad contacts, the proteins were aligned on the basis of their
principal axes and immersed in rectangular water boxes with
dimensions 16 Å longer than the distance between protein extrema
in each direction. For simulating the free ligand systems, all ligands
were placed in cubic water boxes of side 30 Å. MD simulations were
performed using the GROMACS package v5.0.0.25 The CHARMM36
force field26−28 was used for the protein and the CHARMM General
Force Field (CGenFF)29 for the ligands. The TIP3P model30 modified
for the CHARMM force field31 was used to represent water. All
simulations were performed under periodic boundary conditions. van
der Waals (vdW) interactions were switched off smoothly in the range
8−10 Å, and the particle mesh Ewald method was used to treat long-
range electrostatics with a real space cut off of 10 Å. Long-range
dispersion correction to the energy and pressure was applied. The
LINCS algorithm was used to constrain all bonds involving a hydrogen
atom. All solvated systems were energy minimized for 500 steps using
the steepest descent method under periodic boundary conditions. The
systems were then equilibrated in the NVT ensemble at 298 K using
the velocity rescaling method over 100 ps. Following equilibration,
production simulations were performed in the NPT ensemble, where
the temperature of 298 K was maintained using the Nose−Hoover
thermostat and pressure of 1 atm maintained using the Parrinello−
Rahman barostat. The first 1 ns of production in each series of
simulations was not considered for analysis. In all systems simulated,
all protein non-hydrogen atoms were restrained with a force constant
of 24 kcal/mol Å−2. The same restraints were applied to ligand heavy
atoms in the free ligand simulations, but not in the complexed state
simulations. In the latter case, the ligand was restrained to the binding
site center by a flat bottom spherical boundary potential, with a radius
of 4 Å.
2.9. Identification of Ligand Binding Sites on the Proteins.

The study of binding thermodynamics undertaken here required an
initial step of identifying valid binding sites on the protein surfaces.
The approach adopted here closely follows our previous work in the
context of the Site Identification by Ligand Competitive Saturation
(SILCS) method,32,33 modified to map the binding sites of single
solutes as opposed to multiple solutes. Another modification necessary
to keep the subsequent calculations consistent with binding site
detection was the use of the same protein restraints as used in all other
simulations. The proteins were immersed in an aqueous solution of 1
M propane or methanol. Ten independent 40 ns long MD simulations
separately for propane and methanol were performed involving the
binding and unbinding of ligands with the protein. In simulations
involving propane, an artificial repulsive term was added to prevent
propane−propane aggregation in the simulation box.32 The simulation
snapshots output every 10 ps were analyzed to build 3D histograms
with resolution 0.5 Å of the center of mass (CoM) coordinates of the
ligand. In order to identify binding sites from the histograms, we
applied a clustering algorithm described previously.34 Briefly, the
clustering algorithm begins by assigning an arbitrarily chosen grid
center point to the first cluster, and thereafter, each grid element is
either assigned to an existing cluster if its center is located closer than
5 Å to any cluster or else to a newly created cluster. After the inclusion
of each element in a cluster, the cluster centers are recomputed as the
mean of the coordinates of the members. Following the initial
assignment, an iterative loop is run, which would redo the cluster
assignment on the basis of the distance from the existing cluster
centers. The iteration is terminated once no more updates of the

cluster assignment occur. Only voxels with significant occupancy were
selected for clustering in order to restrict the number of favorable
binding sites to be less than 20. A cutoff of 80× bulk density was used
except for propane histogram maps in P38MK, where it was 200×.

3. RESULTS

Our goal is to provide a thorough thermodynamic character-
ization of the binding of fragment-sized ligands to diverse
protein pockets. This is achieved by first generating the
configurational ensemble of the solvated systems in the end
states of the thermodynamic transition, and second, using it to
calculate excess energy and entropy. As shown schematically in
Figure 1, three series of MD simulations are performed that
involve the free ligand (L), the free protein (P), and the
protein−ligand complex (PL). The first calculation (L) results
in the hydration thermodynamics and free energy of the ligand.
The second calculation results in the local hydration
thermodynamics of the free protein pocket (P). The third
system calculates the thermodynamics of the complexed PL
state, which includes contributions from hydration and the
ligand with respect to an ideal gas state of the ligand. As we
describe below, detailed insight into binding thermodynamics is
obtained by calculating the differences in the energetic and
entropic terms obtained from these three ensembles and
associated calculations.

3.1. Bulk Water Properties. The excess solvation energy
and entropy calculated in this study are referenced to bulk
water. Therefore, it is important to obtain properties of bulk
water accurately using the same force field and simulation
parameters as used in the remainder of this study. MD
simulations of cubic water boxes with edge length 30 Å were
performed per the protocol described above to obtain 10
trajectories, each 20 ns long, with frames output every 400 fs for
analysis. Excess energy and entropy were calculated for a
spherical region of radius 8 Å centered in the simulation box.
The entire simulation data (200 ns) was used to calculate the
average energy of a water molecule in bulk Ebulk yielding
−9.821 96 kcal/mol. The bulk density ρ0 from the same
simulation data was calculated to be 0.033 97 Å−3. To test
convergence properties, only the first 120 000 frames were used
from the simulations. Figure S1a in the Supporting Information
shows the convergence of excess energy ΔEww, the translational
entropy TΔSsw,trsolv , and rotational entropy TΔSsw,rotsolv which attain
values sufficiently close to zero. Deviation from zero for these
quantities is less than RT with 20 000 frames and reaches less
than (1/2)RT by 50 000 frames. On the basis of this test, we
conclude that our approach is capable of yielding reasonably
converged thermodynamic properties for spherical volumes of
radius 8 Å.

3.2. Solvation Thermodynamics of Ligands. Using the
same protocol as for the pure water simulation described above,
each ligand molecule was placed at the center of a cubic water
box with edge length 30 Å. Ten independent MD simulations,
each 5 ns long, were performed, during which the heavy atoms
of the ligand were strongly restrained (see the Theory and
Methods section). Thermodynamic properties were calculated

Table 1. Thermodynamic Properties of Ligand Solvationa

molecule nwat Elw ΔEww −TΔSlw −TΔSww ΔGcalc
solv ΔGFEP

solv ΔGexp
solv

propane 69.47 −8.08 5.83 6.22 −1.87 2.10 1.60 1.96
methanol 71.24 −18.72 9.08 4.72 −1.42 −6.34 −6.16 −5.10

anwat is the number of water molecules recorded in the analysis region of the 8 Å radius sphere. Units are kcal/mol.
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for the ligand and the surrounding water contained in the 8 Å
radius sphere centered in the box. Snapshots from the
simulations were analyzed to calculate the solvation energy
ΔEL

solv, which is composed of ligand−water energy Elw, and
water reorganization energy ΔEww. The first order excess
entropy of water, ΔSswsolv, was calculated using eq 20. Table 1
shows the energy terms and ΔSswsolv along with the calculated
solvation free energy ΔGcalc

solv for propane and methanol. As
detailed in the Theory and Methods section, we adopted a
simple approximation to estimate the water−water entropy
ΔSwwsolv by scaling the solute-water entropy by a constant c (eq
19). Previous work15 has used a value of c = −0.5. However,
our work differs by its use of discretization that is involved in
GIST. It has been noted that the discretization adopted during
the calculation of histogram based ΔSsw,trsolv has a tendency to
underestimate this quantity. Thus, it is expected that the value
of c would be sensitive to implementation details including the
histogram bin size, and other parameters, such as the snapshot
output frequency. A value of c = −0.3 resulted in the best
reproduction of experimental hydration free energies. For
methanol, the deviation from experimental value is >1 kcal/
mol. However, we note that the agreement is much better when
we compare our values with those computed using free energy
perturbation (FEP) using the same force field,35 also shown in
Table 1. In addition, we performed the simulations and analysis
for four other ligands (benzene, methane, acetamide,
formamide) spanning a hydration free energy range of more
than 10 kcal/mol, to validate our choice of c. Table S1 in the
Supporting Information shows good reproduction of exper-
imental/FEP data across the data set and significant improve-
ment in the prediction of ΔGexp

solv when compared to c = −0.5.
Across the 4 ligands for which FEP data were computed, the
average absolute unsigned error is 0.46 kcal/mol. Supporting
Information Figure S1b−g shows good convergence of the
excess energy ΔEL

solv, and excess solvent entropy ΔSLsolv for all
the systems investigated. The well-reproduced experimental or
computational ΔGL

solv shows that our approach is capable of
capturing solvation thermodynamics within the accuracy of the
force field used. Therefore, the same protocol, including a value
of c = −0.3 was adopted for calculations in the P and PL states
described below.
3.3. Calculation of Binding Thermodynamics. As a first

step toward the investigation of binding thermodynamics, MD
simulations of the proteins FXa and P38MK were performed in
1 M solutions of propane or methanol, as described in Theory
and Methods section. A cumulative sampling time of 400 ns for
each of the four systems identified protein sites to which the
ligands bind spontaneously. Simulation trajectories were
analyzed to build discretized 3D probability maps of ligand
position, which were clustered as described above to identify
centers of the binding pockets. Figure 2 shows the surfaces of
the proteins FXa and P38MK, overlaid with the 3D ligand
occupancy maps. The identified cluster centers are shown as
spheres of the green and red colors for propane and methanol,
respectively. Following the detection of binding sites, they were
ranked on the basis of the highest occupancy voxel of the
cluster, and the top ten propane and methanol sites for both
proteins were chosen for further calculations. Figure 2 also
shows the resultant binding affinity computed for each pocket
using the end-point method.
To generate the configurational ensemble for the free

proteins P, we obtained 5 MD trajectories, each 5 ns long of
the solvated proteins. For the calculation of local thermody-

namics of each binding pocket, the same 25 ns cumulative
sampling data was used. In the case of the complexed states, PL,
separate simulations were needed to generate the configura-
tional ensembles for each binding site. For each pocket the
protein−solvent system used in the P state was retained, and
the ligand was placed at the pocket center. There were 5 × 5 ns
MD trajectories generated, with the ligand confined within 4 Å
of the binding pocket center using a spherical flat bottom
restraint. During all simulations, snapshots were output every
400 fs, resulting in 62 500 frames for analysis. In the complexed
state, a spherical volume of 2 Å radius centered at the pocket
center was designated as the binding site. Thus, the ligand was
considered unbound when its CoM was more than 2 Å away
from the pocket center, and such conformations were not
considered a part of the PL ensemble. The spherical flat bottom
potential was applied with a larger radius than that of the
designated binding site so as to allow the ligand and water to
rearrange in the binding site. The section in the Supporting
Information titled ”Effect of Binding Site Size” and Supporting
Information Figure S2 show that the results do not change
significantly by reducing or increasing the binding site radius to
1 or 3 Å, respectively. This also serves to validate the
approximation used in eq 12, as it shows weak dependence of
ΔGb

o with the ligand position rL. For FXa and P38MK, 10
binding sites each of propane and methanol were investigated,
resulting in a total of 40 pockets. Figure S3 in the Supporting
Information shows the excellent convergence properties of
computed thermodynamic quantities from the PL states of 12
pockets as representative examples. Calculations for other
pockets and from the P states showed similarly-well converged
properties (data not shown).

3.3.1. Propane Binding. Table 2 displays the thermody-
namic contributions of different molecular degrees of freedom
to the binding of propane to pockets in FXa and P38MK. The
table also reports averages and standard deviations computed
over all pockets. The difference in the number of waters in the
P and PL states Δnwat shows that propane binding displaces 3−
4 water molecules from the binding pockets. The water
reorganization energy ΔΔEww and direct protein−ligand
interaction energy Epl favor binding. On the other hand, the
change in protein−water interaction energy ΔEpw and the

Figure 2. Proteins Factor Xa (FXa) (a) and P38 MAP kinase
(P38MK) (b) shown in surface representation. Overlaid are the 3D
ligand occupancy maps of propane (methanol) center of mass (CoM)
coordinates as green (red) wireframes at 40× (100×) bulk density for
FXa (P38MK). Methanol densities are shown at a cutoff of 40× bulk
density for both FXa and P38MK. The top 10 centers of affinity for
each ligand identified by clustering the occupancy maps are depicted as
spheres with the same color as the maps. Arrows point to the known
ligand binding pockets FP2/FM5, and PP1/PM4 for panels a and b,
respectively, which are discussed in the text. Also indicated are the
binding free energies of each pocket calculated by the end-point
method.
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ligand−water interaction energy ΔElw oppose binding.
Although the magnitude of ΔΔEww is on average more
favorable than Epl by 1.9 kcal/mol, the contributions are
comparable, a finding which is different from the analysis by
McCammon and co-workers using model ligands and cavities.10

The entropy of water reorganization (−TΔΔSbsolv) favors
binding. This contribution spans a range of more than 4
kcal/mol (−8.74 to −4.39) and does not correlate with the
number of water molecules displaced (R2 = 0.03). Expectedly,
the loss in translational and rotational entropy of the ligand

Table 2. Thermodynamic Contributions of the Different Degrees of Freedom Implicated in the Binding of Propane to Pockets
in Factor Xa (F) and P38 MAP Kinase (P)a

site Δnwat ΔΔEww ΔEpw ΔElw Epl −TΔΔSbsolv −TΔSL* ΔEb −TΔSb ΔGb
o

FP1 −3.10 −9.38 8.67 4.62 −6.80 −5.01 4.39 −2.88 −0.62 −3.51
FP2 −3.78 −12.57 16.35 4.77 −8.89 −8.19 4.49 −0.34 −3.70 −4.04
FP3 −3.96 −11.21 15.83 4.70 −7.56 −7.16 4.27 1.76 −2.89 −1.13
FP4 −3.92 −8.15 8.79 3.61 −5.59 −4.53 3.81 −1.34 −0.72 −2.07
FP5 −4.34 −8.10 12.06 3.64 −5.15 −5.99 3.77 2.44 −2.23 0.21
FP6 −3.35 −12.00 15.83 3.94 −7.04 −6.28 4.95 0.73 −1.33 −0.60
FP7 −3.82 −2.82 4.89 3.56 −5.52 −4.40 3.89 0.12 −0.51 −0.40
FP8 −3.81 −7.42 10.54 3.84 −6.24 −5.59 3.78 0.72 −1.80 −1.08
FP9 −4.29 −7.19 12.75 2.66 −4.65 −5.69 3.67 3.56 −2.03 1.54
FP10 −3.33 −10.95 13.35 3.60 −6.87 −4.39 4.50 −0.87 0.11 −0.76
PP1 −3.23 −14.80 14.24 6.48 −10.04 −7.62 5.51 −4.13 −2.12 −6.24
PP2 −2.78 −15.48 15.44 5.47 −9.08 −5.44 5.55 −3.65 0.10 −3.55
PP3 −4.37 −5.77 10.99 4.47 −7.26 −7.34 4.43 2.43 −2.91 −0.48
PP4 −4.50 −10.05 14.05 5.27 −7.54 −8.66 3.92 1.73 −4.75 −3.02
PP5 −3.67 −6.10 7.36 3.63 −6.04 −5.24 4.09 −1.15 −1.15 −2.29
PP6 −4.06 −5.84 5.37 3.28 −5.47 −4.74 3.72 −2.66 −1.02 −3.68
PP7 −3.12 −14.29 18.54 5.58 −9.54 −8.74 6.01 0.28 −2.72 −2.44
PP8 −3.21 −3.20 9.60 4.86 −6.51 −6.11 4.35 4.75 −1.76 2.99
PP9 −4.18 −4.46 7.31 4.13 −6.76 −6.44 4.13 0.22 −2.31 −2.10
PP10 −4.36 −7.22 9.80 3.85 −5.75 −7.10 3.79 0.68 −3.30 −2.62
av −3.76 −8.85 11.59 4.30 −6.91 −6.23 4.35 0.12 −1.88 −1.76
std 0.51 3.75 3.87 0.92 1.51 1.39 0.67 2.34 1.28 2.08

aUnits are kcal/mol. The first letter (F or P) in the site nomenclature identifies the protein, and the second letter identifies the ligand; propane (P),
methanol (M); e.g., FP1 denotes propane binding pocket 1 in Factor Xa. Δnwat is the number of water molecules displaced upon ligand binding.

Table 3. Thermodynamic Contributions of the Different Degrees of Freedom Implicated in the Binding of Methanol to Pockets
in Factor Xa (F) and P38 MAP Kinase (P)a

site Δnwat ΔΔEww ΔEpw ΔElw Epl −TΔΔSbsolv −TΔSL* ΔEb −TΔSb ΔGb
o

FM1 −1.62 −16.12 17.95 16.05 −20.39 −5.39 7.43 −2.50 2.04 −0.46
FM2 −1.66 −10.73 8.51 8.63 −9.08 −4.64 5.99 −2.67 1.35 −1.31
FM3 −1.71 −12.28 11.22 11.34 −12.68 −4.64 6.24 −2.40 1.60 −0.80
FM4 −1.80 −11.55 11.26 10.45 −10.25 −5.17 5.10 −0.10 −0.07 −0.17
FM5 −2.13 −9.39 10.23 6.14 −7.82 −6.47 4.67 −0.84 −1.81 −2.65
FM6 −2.02 −11.92 13.33 12.45 −14.02 −5.25 6.45 −0.16 1.20 1.04
FM7 −1.99 −14.53 15.74 14.50 −15.12 −4.76 5.50 0.59 0.73 1.33
FM8 −1.68 −8.67 8.02 9.35 −10.95 −5.05 6.13 −2.26 1.08 −1.17
FM9 −1.88 −5.95 7.82 5.63 −7.69 −6.40 4.80 −0.18 −1.59 −1.77
FM10 −1.95 −12.93 12.80 11.58 −13.35 −5.12 5.72 −1.89 0.60 −1.30
PM1 −1.70 −16.71 14.59 13.58 −14.22 −5.22 5.66 −2.75 0.44 −2.31
PM2 −1.95 −9.81 10.25 9.80 −11.01 −5.32 4.75 −0.78 −0.58 −1.35
PM3 −1.73 −13.27 15.98 10.19 −10.10 −6.28 6.82 2.80 0.54 3.34
PM4 −1.62 −10.88 8.18 9.33 −8.17 −5.60 4.88 −1.54 −0.72 −2.26
PM5 −1.58 −15.15 19.01 16.82 −21.23 −7.29 7.72 −0.55 0.42 −0.13
PM6 −1.89 −10.35 10.48 11.26 −12.95 −5.20 5.39 −1.55 0.19 −1.36
PM7 −2.34 −13.14 15.32 12.15 −13.48 −6.03 5.63 0.85 −0.40 0.44
PM8 −2.09 −5.42 5.41 5.71 −6.46 −5.22 5.41 −0.76 0.19 −0.57
PM9 −2.71 −9.84 10.99 8.59 −8.23 −7.21 4.62 1.51 −2.59 −1.07
PM10 −2.01 −10.64 13.60 8.80 −10.72 −5.51 6.12 1.04 0.61 1.65
av −1.90 −11.46 12.03 10.62 −11.90 −5.59 5.75 −0.71 0.16 −0.55
std 0.28 2.98 3.64 3.11 3.93 0.78 0.88 1.53 1.17 1.49

aUnits are kcal/mol. The first letter (F or P) in the site nomenclature identifies the protein, and the second letter identifies the ligand; propane (P),
methanol (M); e.g., FM1 denotes methanol binding pocket 1 in Factor Xa. Δnwat is the number of water molecules displaced upon ligand binding.
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upon binding (−TΔSL*) opposes binding. The computed
standard binding free energies, ΔGb

o, of most sites are negative
as expected, with the exception of 3 sites (see Discussion).
3.3.2. Binding of Methanol and Comparison to Propane

Binding. Table 3 presents the magnitude of the different
thermodynamic contributions to binding of methanol to the
pockets in FXa and P38MK. The first notable difference
between the binding of propane and methanol is that the
former displaces on average 3.76 ± 0.51 water molecules upon
binding, whereas the latter displaces only 1.90 ± 0.28. One
possible reason for this could be the slightly larger size of
propane causing it to bind to larger pockets, leading to the
displacement of more number of water molecules. However,
Figure 2 shows many pockets that bind both propane and
methanol. Therefore, pocket geometry alone may not
determine the number of water molecules displaced. The
number of waters displaced by methanol ranges from 1.58 to
2.71, whereas the range for propane is 2.78−4.50, which
indicates a larger number of water molecules displaced by the
latter irrespective of the pocket considered. The more plausible
reason could be the polar interaction of methanol with water
allowing for favorable water−solute interactions leading to
approximately an additional water remaining in the binding
pocket. This is confirmed when we discuss binding of both
ligands to pocket PP1 below.
Next, we compare differences in the energetic and entropic

contributions to the binding of the two solutes. There is a
significant difference in the change in ligand−water interactions
between propane and methanol. In both cases ΔElw opposes
binding; i.e., the ligand has more favorable interactions with
water in the free state than in the complexed state. The polar
methanol molecule typically loses more stabilizing interaction
energy with water upon binding (10.62 ± 3.11 kcal/mol) than
propane (4.30 ± 0.92 kcal/mol). This gain in energy is
somewhat compensated by a more favorable protein−ligand
interaction energy for methanol (−11.90 ± 3.93 kcal/mol) than
propane (−6.91 ± 1.51 kcal/mol). The sum of these two terms
(ΔElw + Epl) is more favorable for propane at −2.62 ± 0.77
kcal/mol, than methanol at −1.28 ± 1.37 kcal/mol. But the
relative unfavorability of ligand associated interactions of
methanol are compensated by more favorable water−water
energy ΔΔEww and protein−water energy ΔEpw resulting in a
lack of significant total binding energy difference ΔEb between
methanol (−0.71 ± 1.53 kcal/mol) and propane (0.12 ± 2.34
kcal/mol). Among entropic contributions, propane binding
leads to a slightly larger water entropy gain (−TΔΔSbsolv =
−6.13 ± 1.36 kcal/mol) than methanol binding (−5.56 ± 0.71
kcal/mol). Again, this relatively small difference in entropy
change is not reflected in the number of displaced waters,
which is different by a factor of 2. Methanol loses more rigid
body entropy upon binding than propane, on average by 1.32
kcal/mol. This can be rationalized by the fact that methanol,
with its hydrogen bonding ability, can form more specific
interactions with the protein and neighboring waters causing it
to be more conformationally restrained. The ligand entropy and
water entropy together lead to a more favorable entropy of
propane binding (−1.88 ± 1.28 kcal/mol) than methanol
binding (0.16 ± 1.17 kcal/mol). The average binding affinity of
propane (−1.76 ± 2.08 kcal/mol) is more favorable than
methanol (−0.55 ± 1.49 kcal/mol).
3.4. Spatial Analysis of Binding Thermodynamics. To

obtain further mechanistic insight into the binding processes,
we compute spatially resolved contributions of the thermody-

namic quantities, which are enabled by the grid based
formulation adopted in this work. To illustrate this ability
and provide an overview of the method, we analyze the binding
of propane and methanol to the binding pocket PP1/PM4 in
P38MK, which binds both ligands. This pocket has the highest
affinity for propane (−6.24 kcal/mol), and is shown by an
arrow in Figure 2b. Pocket PP1 is located in the vicinity of
Thr106, which directly interacts with a difluoro phenyl group of
the ligand in the 1OUY cocrystal structure. Thus, the analysis
of this pocket PP1/PM4 is relevant to pharmaceutically
important protein−ligand binding. This pocket also has the
second highest affinity for methanol (pocket PM4; ΔGb

o =
−2.26 kcal/mol). The centers of sites PP1 and PM4 nearly
coincide with each other, even though they were obtained from
different simulations, facilitating the use of the site for detailed
analysis of both methanol and propane binding.
Spatial analysis of the water energy distribution in methanol

binding is first presented for the PP1/PM4 site in Figure 3,

followed by more detailed analysis which reveals intricate
details of the binding mechanisms of both ligands to this
pocket. In panels a and b, un-normalized voxel energy
uΔExsolv(v) is plotted at different contour cutoffs, which is
given as

Δ = + −u E v E v E v E( ) ( )
1
2

( )x
solv

sw ww bulk (29)

The expression for uΔEx
solv(v) differs from that of ΔExsolv(v) (eq

17) simply by the absence of the water density prefactor. The
solute water energy Esw is computed as a sum of protein−water
energy Epw and ligand−water energy Elw, the latter of which is
absent in the P state. Panel a shows many regions with
favorable (<−1 kcal/mol; transparent cyan) and unfavorable
excess energies (>1 kcal/mol; black wireframes). Panel b shows
a representative snapshot of methanol to mark the location of

Figure 3. Visual analysis of the spatial distribution of per voxel un-
normalized excess energy uΔExsolv(v), and normalized excess energetic
contribution ΔExsolv(v) for methanol binding to pocket PP1/PM4 in
p38 MAP kinase. Panels a and b show uΔExsolv(v) for states P and PL,
respectively. Both unfavorable and favorable energy contours are
drawn, with the cutoffs for each contour indicated at the bottom right
corner of each panel. Panels c and d show ΔExsolv(v), which is
normalized by local density for systems P and PL, respectively. Protein
atoms blocking the view of the pocket were removed. Units of energy
are kcal/mol.
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the binding site. By comparing panels a and b it is evident that,
upon ligand binding, most of the unfavorable regions in the
immediate vicinity of the ligand are converted to favorable
regions. Additionally, in both panels blue wireframes and green
solid contours show regions that have significantly more
favorable average energy than bulk, which show subtle changes
upon methanol binding. Panels c and d show ΔEx

solv(v) (eq 17),
which represents the actual contribution to hydration energy in
each voxel as it is weighted by voxel water density. Notably, the
unfavorable regions observed in panels a and b are absent in
panels c and d because the corresponding voxels have very low
water occupancies. A comparison of panels c and d reveals
additional favorable water energetic contributions adjacent to
the oxygen of methanol. While the solid green contours
removed from the ligand highlight the most favorable water
binding sites, these regions do not show significant differences
between the P and the PL states. A more detailed analysis of the
differential contributions between the two states which
determine the driving forces behind binding is presented
below. Figure 3 thus highlights the ability of the method to
identify the spatial distribution of the contributions of
individual terms to the thermodynamic properties. An integral
over the entire region R irrespective of occupancy enables our
approach to carry out a rigorous calculation of binding
thermodynamics. Such spatial analysis can also be performed
for solvent entropy and free energy, as shown below.
Figure 4 highlights the contributions of water probability,

energy and entropy spatial distributions in the P and PL states,
with the results for propane (panels a−c) stacked over those for
methanol (panels d−f). In all panels, data from the P
simulation is depicted in cyan, and that from PL simulation
in red. The center of the binding pocket is demarcated by a
small black sphere in all panels, except b, and e where a

representative ligand conformation is shown instead. Panels a
and d in Figure 4 show the binding pocket overlaid with water
density contours at 2× bulk density from the P and PL
simulations for propane and methanol, respectively. Panel a
shows three regions of water density in P that are absent in the
PL state. These represent regions where water molecules are
displaced due to the binding of propane, and are in agreement
with the nearly 3 water molecules displaced upon binding of
propane (Table 2). One of the displacement sites, namely w0,
coincides with the pocket center. The other two flanking sites
namely w1 and w2, are indicated in panel a by arrows along
with site w0. Examination of panel d shows that flanking sites
w1 and w2 are not emptied completely upon binding of
methanol.
The spatial decomposition of the thermodynamic contribu-

tions was next analyzed. Since the ligand remains localized to
the binding site, Epl and ΔSL* (v) are not included in the visual
presentation. Equations 17 and 24 are used to calculate the per
voxel contributions of the solvent excess energetic and entropic
terms, respectively, for the states P and PL. Figure 4b,e shows
the per voxel excess energy contours ΔEP

solv(v) (cyan) and
ΔEPL

solv(v) (red) plotted at < −0.05 kcal/mol. In panels b and e
the lack of favorable density in the P state at the center of the
pocket, which corresponds to w0, indicates that water is not
energetically favored at that position in either state. Second, the
flanking water sites w1 and w2 prefer water energetically, and
the displacement of these waters upon propane binding (panel
b, PL state) is expected to result in an energetic penalty.
However, this is not the case for methanol; energy contours of
both the P and PL states in panel e show the presence of
favorable energetic contributions for waters w1 and w2. Panels
c and f show the per voxel excess entropy of the P
(−TΔSPsolv(v); cyan) and PL (−TΔSPLsolv(v); red) states,
contoured at >0.05 kcal/mol, such that the plots identify
entropically unfavorable regions. For propane, all three
displaced waters would contribute favorably to binding, as
they are all displaced upon binding. On the other hand, for
methanol only the central water site is emptied completely, and
therefore the favorable entropic contribution to binding would
be lesser, consistent with the −TΔSPLsolv(v) values of −7.62 kcal/
mol for propane (Table 2, site PP1) and −5.60 kcal/mol for
methanol (Table 3, site PM4), the difference being larger than
the 1 kcal/mol difference in the solvation entropy of the
ligands. These qualitative inferences drawn from panels a−f are
further verified as detailed in the analyses below.
An informative way of visualizing the thermodynamic

contributions is by creating “difference” maps, which display
the per voxel differences of the excess energy and entropy
values between the bound and unbound states.

ΔΔ = Δ − Δ−A v A v A v( ) ( ) ( )PL P
solv

PL
solv

P
solv

(30)

Here A indicates either energy E, entropy S, or the free energy
G. In addition, to quantify the difference observations in overall
terms, we computed a cumulative sum of the three
thermodynamic quantities as a function of distance R from
the pocket center.

∑ΔΔ = ΔΔ−
ϵ

−A R A v( ) ( )
v R

PL P
solv

PL P
solv

(31)

Here, A indicates either energy E, entropy S, or the free energy
G. Such analysis allows for detailed dissection of the differential
contributions of propane versus methanol binding to this

Figure 4. Visual analysis of the spatial distribution of the probability,
energy and entropy of water in the binding of propane and methanol
to pocket PP1/PM4 in p38 MAP kinase. Panels a−c show data for
propane binding and d−f for methanol. Panels a,d show water density
at 2× bulk as a function of voxel position g(v) for the free protein (P,
cyan) and the complex (PL, red surface). Panels b and e show excess
solvation energy as a function of voxel ΔEPsolv(v) for P (cyan), and
ΔEPLsolv(v) for PL (red) states at a cutoff of < −0.05 kcal/mol. Panels b
and e also show a representative ligand conformation and a transparent
blue sphere marking the extent of the binding site. Panels c and f show
the excess entropic contribution −TΔSPsolv(v) for P (cyan), and
−TΔSPLsolv(v) for PL (red) at a cutoff of >0.05 kcal/mol. The pocket
center is demarcated by a small black sphere, and the proximal water
sites are indicated by arrows. Contour legend is shown in panel a.
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common pocket. The spatial difference maps are shown in
Figure 5, again with the results for propane (panels a−c)
stacked over those for methanol (panels d−f).

The free energy difference spatial distributions, ΔΔGPL−P
solv (v),

are shown as contours at favorable (<−0.05 kcal/mol; green)
and unfavorable (>0.05 kcal/mol; blue) cutoffs in panels a and
d of Figure 5. Panels b and e present the ΔΔEPL−Psolv (v) favorable
(<−0.05 kcal/mol; green) and unfavorable (>0.05 kcal/mol;
blue) values, while the entropic terms −TΔΔSPL−Psolv (v) at <
−0.05 kcal/mol in green and >0.05 kcal/mol in blue are in
panels c and f. Cumulative energy ΔΔEPL−Psolv (R), entropy
−TΔΔSPL−Psolv (R), and free energy ΔΔGPL−P

solv (R) contributions as
a function of distance from pocket center are in panels g and h,
for propane and methanol, respectively. With propane there is a
favorable ΔΔGPL−P

solv region near the center of the pocket
corresponding to w0, with an unfavorable region corresponding
to w1. The favorable contribution of w0 is associated with a
favorable entropy contribution (Panel c). With w1, a favorable
entropic contribution is more than compensated by an
unfavorable ΔΔEPL−Psolv contribution (panel b) leading to the
unfavorable free energy contribution. Energy-entropy compen-
sation also occurs with w2 upon propane binding, with the
balance yielding no significant ΔΔGPL−P

solv for this region.
Moving away from the pocket center shows favorable ΔΔGPL−P

solv

gions in the vicinity of 5Å followed by unfavorable regions. This
alternating pattern is also observed for entropic contributions

which compensate the energetic regions (compare panels b and
c). The reason for the alternating profile is likely due to the
shifting of water molecules in PL, compared to the P state. The
energy-entropy compensating behavior is evident in the
cumulative ΔΔAPL−P

solv (R) plot in panel g for propane. The
energy contribution is unfavorable, compensated by favorable
entropic contribution with the magnitude of both terms
increasing out to 4 Å. A reversal in the trend occurs at 5 Å,
associated with favorable free energy region beyond w1,
followed by relatively small changes. Thus, the solvent
thermodynamic contributions to the binding of propane are
dominated by energy-entropy compensation.
The thermodynamic contributions of water to methanol

binding are strikingly different than from propane. As seen in
Figure 5, panel d, there are no significant ΔΔGPL−P

solv

contributions in the center of the pocket corresponding to
w0, while favorable regions are observed corresponding to both
w1 and w2. The favorable ΔΔGPL−P

solv for the w1 and w2 regions
is due to small unfavorable ΔΔEPL−Psolv contributions (panel e)
combined with significantly favorable ΔΔSPL−Psolv contributions
(panel f). The less unfavorable ΔΔEPL−P

solv is consistent with
partial displacement of these waters by methanol, as opposed to
the full displacement that occurs upon propane binding. This
overall effect is seen in the cumulative plot out to 3 Å in panel
h. Favorable energy difference regions are present moving
further from the binding pocket, which are not compensated by
any entropic loss, leading to the favorable ΔΔGPL−P

solv regions
(panel e) and the cumulative more favorable G (panel h). Thus,
in contrast to the energy−entropy compensation with propane
binding, energy−entropy reinforcement is occurring with
methanol binding. Potentially contributing to this are favorable
water−methanol interactions, also shown in Figure 3, that lead
to only partial desolvation of the binding site, thereby leading
to a less unfavorable ΔΔEPL−Psolv contribution. We note here that
the presented analysis highlights the spatial distribution
differential of the solvent thermodynamic contributions
between the PL and P states. In terms of the total energy
and entropy, after including contributions from the L state and
ΔSL*, the binding of both ligands to this pocket happens via the
re-enforcement mechanism (Tables 2 and 3).
The results summarized above and shown in Figures 4 and 5

represent an unprecedented picture of the thermodynamic
forces that drive binding. It is notable how binding of these two
small molecules to the same pocket happens through very
different mechanisms, with the most notable being the
differential contributions of water regions in the binding site
in the presence and absence of the ligand. We anticipate that
the present approach will be of utility for providing atomic level
thermodynamic insights into binding mechanisms in a wide
range of systems.

4. DISCUSSION
Our goal in this study was to provide thermodynamic insights
in atomic detail into the binding of small molecules to proteins.
While the importance of modeling water in the context of
noncovalent binding has been long recognized,36,37 rigorous
estimation of thermodynamics associated with water reorgan-
ization upon binding remains a difficult task. Implicit solvent
models have had successes in simplifying this and have
provided avenues for constructing statistical thermodynamic
approaches to model binding.38 However, implicit solvents do
not capture the molecular nature of water, and the
directionality of hydrogen bonds, which become important at

Figure 5. Visual analysis of the differences in the thermodynamic
contributions of water to the binding of propane and methanol to
pocket PP1/PM4 in p38 MAP kinase. Panels a−c and g show data for
propane binding and d−f and h for methanol. Panels a and d show the
difference contours ΔΔGPL−P

solv (v) plotted at a favorable cutoff of < −
0.05 kcal/mol (green) and an unfavorable cutoff of >0.05 kcal/mol
(blue). Panels b and e show ΔΔEPL−Psolv (v) plotted at a favorable cutoff
of < −0.05 kcal/mol (green) and an unfavorable cutoff of >0.05 kcal/
mol (blue). Panels c and f show −TΔΔSPL−Psolv (v) at a favorable cutoff of
<−0.05 kcal/mol (green) and an unfavorable cutoff of >0.05 kcal/mol
(blue). Panels g and h show the cumulative sum of the difference in
solvation thermodynamic quantities ΔΔEPL−Psolv (R), −TΔΔSPL−Psolv (R),
and ΔΔGPL−P

solv (R), as a function of distance R from the binding site
center. The pocket center in panels a-f is demarcated by a small black
sphere, and the proximal water sites are indicated by arrows.
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the length scales at which protein−ligand binding occurs.
Thermodynamic pathway methods such as double decoupling
free energy perturbation1 or physical pathway methods39 that
include explicit water models have been shown to be powerful
tools to calculate absolute binding free energies. However,
these methods do not provide atomic scale thermodynamic
insights into binding, e.g., the individual enthalpic contributions
of different degrees of freedom, or the entropic contributions of
the solute and solvent.
Two previous studies have taken important steps toward

quantitatively understanding the driving forces implicated in
binding using idealized binding sites and model ligands with
solvent modeled explicitly.10,12 In the present study we extend
those efforts by identifying a set of binding events that are
representative of real protein−ligand binding. This was
achieved by employing MD simulations of two selected
proteins in a 1 M solution of ligands. The 400 ns long
cumulative sampling time resulted in the identification of a

large number of sites that show spontaneous binding of the
ligands. This approach thus ensures that the sites we selected
for analysis represent true binding sites that participate in
biomolecular interactions. Indeed the known ligand binding
sites on these proteins show some of the highest ligand binding
affinities calculated by our method; site PP1 in P38MK is a
known ligand binding site,19 and FP2 in FXa is the site S4
occupied by a large number of known ligands18 (Figure 2).
Interestingly, site S1 in FXa did not show any occupancy of
propane or methanol. One possible reason for this could be this
pocket being negatively charged such that favorable interactions
between the ligands and the binding site cannot overcome the
cost of desolvating that site. Another reason could be the strong
restraints used here, which may prevent the necessary protein
conformational transitions needed for binding in this relatively
buried pocket.
The presented method for computing binding thermody-

namics followed an end-point strategy, where configurational

Figure 6. Thermodynamic signature of propane binding to different pockets on Factor Xa and P38 MAP kinase. The top panel shows the standard
binding free energy, binding energy, and entropic contributions in yellow, blue, and orange, respectively. The nomenclature of binding sites indicates
the protein, ligand, and pocket ID; e.g., FP1 indicates the protein Factor Xa (F), the ligand propane (P), and binding pocket 1. The bottom panels
show correlation plots between the 3 thermodynamic quantities, with trend lines and associated parameters. The units are kcal/mol.

Figure 7. Thermodynamic signature of methanol binding to different pockets on Factor Xa and P38 MAP kinase. The top panel shows the standard
binding free energy, binding energy, and entropic contributions in yellow, blue, and orange, respectively. The nomenclature of binding sites indicates
the protein, ligand, and pocket ID; e.g., FM1 indicates the protein Factor Xa (F), the ligand methanol (M), and binding pocket 1. The bottom panels
show correlation plots between the 3 thermodynamic quantities, with trend lines and associated parameters. The units are kcal/mol.
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ensembles in the bound and the free states were generated
using MD simulations. These ensembles were analyzed using
the Grid Inhomogeneous Solvation Theory (GIST13), with
certain modifications, some of which were enabled by recent
work on improved estimation of solvent entropy.15,17 Our
implementation for solvation thermodynamics was validated by
reproducing the experimental hydration free energies of 6
solutes that spanned a range larger than 10 kcal/mol, to a
reasonable degree of accuracy. Importantly, this work presents
an approach to calculate standard binding free energies that
account for explicit solvent reorganization. The solvent entropy
estimation method used here is strictly defined for a single
solute conformation. Therefore, to enable this computation, in
each end state the protein conformation was restrained.
Second, the choice of ligands was such that they lacked
significant intramolecular degrees of freedom. In principle, eqs
3 and 9 provide generalizations for flexible unrestrained
systems, which when used to analyze ensembles of con-
formations obtained from a long single or multiple simulations
can be used to estimate excess solvent energy and entropy.
Such a treatment would do away with approximations used in
eqs 10−12. Information theoretic approaches40,41 could be
employed for the solute entropy calculation, which in the
present treatment is approximated using eq 8. However, it is
worth re-emphasizing that the choice of protein restraints and
fragment sized ligands retains rigor in the calculations
presented here and allows for well-converged estimates of
thermodynamic quantities.
The thermodynamic signatures of propane and methanol

binding to the two proteins are presented in Figures 6 and 7,

respectively. The top panel in Figure 6 shows that, for propane,
about 50% of binding processes resulted from energy−entropy
re-enforcement and the remaining due to energy−entropy
compensation, with energy contributing unfavorably in the
latter. Total entropy was always found to contribute favorably
to propane binding. The top panel in Figure 7 shows that
favorable methanol binding in a majority of cases involves
energy−entropy compensation, with entropy being unfavor-
able. Only two cases show a prominent reinforcement
mechanism, and both of them happen to be known ligand
binding sites: site FM5, which is the S4 pocket in FXa, and site
PM4, which is the above-discussed ligand binding site in
P38MK (Figure 2). Thus, while the binding of propane or
methanol shows trends over all the sites studied, important
variations at certain sites occur, emphasizing the need for the
analysis of individual binding sites.
The bottom panels in Figures 6 and 7 show correlation plots

between the total binding energy, entropy, and free energy. The
energy−entropy plots for both ligands show a compensating
trend, but the association is weak. For propane, ΔGb

o correlates
strongly with ΔEb, and shows no correlation with entropy.
These findings also hold true for methanol as described below,
but the correlation of ΔEb with ΔGb

o becomes weaker. We note
that ΔGb

o does not show strong correlation with Δnwat, any of
the energetic terms ΔΔEww, ΔEpw, ΔElw, Epl, or the entropic
terms −TΔΔSbsolv or −TΔSL*, considered individually (R2 <
0.3).
An important observation is that in all pockets and with both

ligands the solvation entropy contribution is always favorable
(Tables 2 and 3). Unfavorable total entropy in cases where it

Figure 8. Cumulative sum of the difference in solvation thermodynamic quantities ΔΔEPL−Psolv (R), −TΔΔSPL−Psolv (R), and ΔΔGPL−P
solv (R), as a function of

distance R from the binding site center. A total of 12 pockets are shown.
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occurs results due to the unfavorable overcompensation by
ligand entropy loss. A comparison of Tables 2 and 3 shows that,
on average, propane binding is entropically more favorable by
about 2 kcal/mol than methanol. The bigger part of this
difference arises from the larger rigid body entropy loss of
methanol, by about 1.3 kcal/mol, and the remainder can be
explained by the small difference in total solvation entropy of
binding ΔΔSbsolv, of about 0.6 kcal/mol. This small difference in
solvation entropy can be explained by the nearly 1 kcal/mol
more favorable entropic contribution from the L state when
propane binds, i.e., due to the release of water molecules
interacting with the free ligand. Thus, generally speaking the
data do not show a significant difference in the complexed state
solvent entropy when comparing propane and methanol
binding.
Figures 6 and 7 also show a qualitative consistency between

the rank of the binding sites identified by MD simulations
immersed in 1 M ligand solution and the binding free energies
ΔGb

o calculated by the end-point method. Sites FP1−FP10 are
sorted and ranked in descending order on the basis of the
occupancy of the highest occupancy voxel in each cluster.
Similarly, sites PP1−PP10, FM1−FM10, and PM1−PM10 are
also sorted. Thus, top ranked binding sites are predicted by the
MD data to have high affinity for the fragment. This trend is
qualitatively followed by the end-point based ΔGb

o for propane
as is clear from Figure 6. A similar trend exists for methanol
binding, but not as consistent as for propane. Methanol binding
is also found to be weaker than propane according to computed
ΔGb

o, which is also observed in higher occupancies associated
with propane binding (data not shown).
Out of the 40 pockets investigated, 8 pockets show an

unfavorable ΔGb
o. In two cases ΔGb

o is approximately 3 kcal/
mol, and ΔGb

o > 1 kcal/mol in 4 other cases. This difference
between the thermodynamic end-point and MD approaches
may be due to the interactions between ligands in the latter.
Repulsive interactions are present between propane molecules
to avoid solute aggregation and methanol molecules may
interact with each other. These ligand−ligand interactions are
absent in the thermodynamic end-point approach.
Also presented are detailed spatial analyses of binding

thermodynamics of both ligands in pocket PP1/PM4 of
P38MK. The two ligands bind via different mechanisms:
propane displaced 3 binding site water molecules resulting in a
significant entropic contribution, compensated by lost energetic
interactions made by those water molecules; methanol
displaced lesser number of waters, which causes a relatively
lower entropy gain, but also lacks an energetic penalty. To
expand this analysis to a larger number of pockets the solvent
contributions ΔΔEPL−P

solv (R), −TΔΔSPL−Psolv (R), and ΔΔGPL−P
solv (R)

computed for pockets FP1−3, PP1−3, FM1−3, and PM1−3
are shown in Figure 8. The solvent entropic contribution as a
function of distance R from the center shows a minimum at
approximately 3−4 Å. Ligand binding thus causes an increase in
entropy within this distance from the center, which is due to
the direct displacement of structured waters. In nearly all cases,
there is a “correction” to this number as the entropy reduces
from R > 4 Å to make the final entropic contribution less
favorable. This can be rationalized as more ordering of waters
that form interactions with the ligand. However, in most cases
this correction is not large enough to fully compensate the
entropy gained from the directly displaced waters. The
energetic contribution follows a similar trend, where there is
a steep rise due to the loss of binding site waters up to about 4

Å, followed by a correction at larger distances. The correction is
relatively small in magnitude for propane, but significant for
methanol. This is consistent with the potentially more favorable
interactions that water would make with a polar ligand in the
bound state. An exception to this trend is pocket PM4 shown in
Figures 4 and 5. Another observation from Figure 8 is that, at R
= 8 Å, most pockets show relatively plateaued thermodynamic
properties. For some pockets (e.g., PP2, PM3), it appears that a
larger analysis region would be warranted.
The presented approach offers attractive possibilities to

develop and validate new approximations for predicting
protein−ligand binding thermodynamics. For example, calcu-
lations of the individual contributions of energy and entropy of
the different interacting species performed on experimentally
characterized protein−ligand complexes can serve as target data
for optimizing empirical parameters used in scoring functions
and implicit solvent models.
Finally, we note that, in addition to providing a detailed

thermodynamic analysis of binding, the method holds potential
for applications in drug design. Spatial analysis of solvent
thermodynamic contributions could serve as valuable informa-
tion to propose ligand modifications that may lead to enthalpic
or entropic stabilization. More importantly, as also suggested
previously,13 differential binding thermodynamics between
congeneric pairs in a lead optimization series could be
calculated by accounting for not only solvent associated
terms but also ligand associated terms as performed in this
work. The approach presented here offers avenues to
incorporate the full thermodynamic cycle in the calculation of
binding equilibria in contrast to prior applications incorporating
only solvent associated terms calculated for the unbound
protein alone.6,42 However, it must be noted that the inclusion
of protein−ligand flexibility would require further methodo-
logical developments as discussed above.

5. CONCLUSIONS

Presented is a method for the calculation of binding
thermodynamics while employing an explicit solvent model.
The method is used to calculate and analyze thermodynamic
contributions arising from different degrees of freedom
implicated in the binding of fragment sized ligands to diverse
protein pockets. The ability to spatially resolve the thermody-
namic contributions allowing for an atomic detail under-
standing of those terms is notable. Binding, using methanol and
propane with the proteins Factor Xa and p38 MAP kinase as
models, always led to a gain in solvent entropy, which was
compensated by rigid body entropy loss of the ligand. On
average, propane binding was associated with favorable entropy,
whereas methanol binding is associated with favorable energy.
Direct protein−ligand interaction energy was seen to be nearly
as important as water reorganization energy in favoring binding,
which were compensated by a loss of solute−water interactions.
However, significant variations in the thermodynamic con-
tributions to binding occur in the different sites, with results
showing both energy−entropy re-enforcement and compensa-
tion to drive binding as well as a diversity of mechanisms for
the binding of the studied nonpolar and polar ligands. Further,
the ability of the presented method to compute thermodynamic
contributions of specific degrees of freedom can provide target
data that may potentially be used to develop improved
approximations for modeling protein−ligand binding.
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